Jairo José Da Silva
(2019). How does mathematics get into science, and why?: a Husserlian perspective. Meta, 11 (2), 323-357.
with Centrone Stefania (2017). Husserl and Leibniz: notes on the mathesis universalis. In S. Centrone (ed.) Essays on Husserl's logic and philosophy of mathematics (pp. 1-23). Dordrecht: Springer.
(2017). Husserl and Weyl. In S. Centrone (ed.) Essays on Husserl's logic and philosophy of mathematics (pp. 317-352). Dordrecht: Springer.
(2017). Mathematics and its applications: a transcendental-idealist perspective. Dordrecht: Springer.
(2017). On color: the husserlian material a priori. In M. Silva (ed.) How colours matter to philosophy (pp. 97-105). Dordrecht: Springer.
(ed) (2017). A structuralist perspective on pure applied mathematics. Dordrecht: Springer.
(2016). Husserl and Hilbert on completeness, still. Synthese, 193 (6), 1925-1947. https://doi.org/10.1007/s11229-015-0821-2.
(2012). Husserl on geometry and spatial representation. Axiomathes, 22 (1), 5-30.
(2011). On the nature of mathematical knowledge. In D. Krause & A. A. Passos Videira (eds.) Brazilian studies in philosophy and history of science (pp. 151-160). Dordrecht: Springer.
(2010). Beyond Leibniz: Husserl's vindication of symbolic knowledge. In M. Hartimo (ed.) Phenomenology and mathematics (pp. 123-145). Dordrecht: Springer.
(2010). Structuralism and the applicability of mathematics. Axiomathes, 20 (2-3), 229-253.
(2002). The axioms of set theory. Axiomathes, 13 (2), 107-126. https://doi.org/10.1023/A:1021333001717.
(2000). Husserl's two notions of completeness. Synthese, 125 (3), 417-438. https://doi.org/10.1023/A:1005265017902.
with Silva José Filipe (1997). Husserl's phenomenology and Weyl's predictivism. Synthese, 110 (2), 277-296. https://doi.org/10.1023/A:1004937311034.
(1993). Husserl's philosophy of mathematics. Manuscrito, 16 (2), 121-148.